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Abstrac&-A full-wave algorithm is proposed to analyze thor-
oughly a 90° bend of coplanar waveguide (CPW). Based on
the mixed potential integral equation (MPIE) formulation, the
equivalent magnetic current distribution on the apertures is
solved by the moment method using overlapping rooftop basis
functions and the Galerkin weighting procedure. The matrix
pencil approach is then utilized to do the de-embedding procedure
and extract both the coplanar and slotline modes scattering off the
asymmetric dkcontinuity. Experiments are performed to measure
the scattering parameters and the results verify the accuracy of
the present algorithm. The full 4x 4 scattering matrix between
these two modes is presented and from which, the occurrence
of the mode conversion is investigated. The mode conversion is
noticed to become almost complete at certain frequencies, which
may be useful in the design of CPW to coupled slotline transition.

I. INTRODUCTION

COPLANAR WAVEGUIDE (CPW) has found increasing
applications in MIC and MMIC due to several advan-

tages it offers over the conventional microstrip line [1], [2].
These include the ease in connecting shunt lumped elements
without using via holes, and the low dispersions of both the
propagation constant and the characteristic impedance for the
coplanar (even) mode. Also, the propagation constant and
the characteristic impedance of CPW can be adjusted by
changing the slot width to strip width ratio. There is no need
to build an extremely thin, and thus fragile, substrate in the
structure miniaturization. However, one of the main obstacles
facing CPW is the excitation of the slotline (odd) mode in

asymmetric discontinuities, like bends and T-junctions, which

are unavoidable in modern circuits where packing density
increases with the complexity of the designs [3]. Two remedies
have been proposed to suppress the odd mode: one is the use
of the air-bridges [4], and the other is the use of the top and/or
bottom ground plane shields [5].

During the past few years, several methods have been
presented to characterize, theoretically and/or experimentally,
CPW asymmetric discontinuities with or without air bridges
[6]-[12]. The hybrid technique has been employed to investi-
gate the suppressing effects of the air bridges on shunt stubs
[6], [1 1], [12], bends, and T-junctions [7]. In this technique,

the structures without air bridges are first analyzed, and
the frequency dependent equivalent circuits are modified by
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incorporating the air bridge’s effect evaluated using a quasi-

static model [13]. The finite difference time domain (FDTD)
method was implemented to the solutions of band reject
filters with and without air bridges and modified T-junctions
[8]. A more detailed frequency domain analysis of the same
filters was carried out by Omar and Chow [9] using the
mixed potential integral equation (MPIE) formulation. Also,

the spectral domain method was applied to analyze T-junctions

with various types of air bridges [10].
While extensive studies aimed at the suppression of the

odd mode, the mode conversion phenomenon itself is com-

paratively unexploited. In [10], the odd mode excited by
the T-junction was obtained by evaluating the inner product
between the solved field distributions and the precomputed
modal fields. The approach requires the solution of the field
in a whole plane transverse to the CPW section and the modal
field distribution obtained in the line eigenvalue problem is

prerequisite. A better approach is thus proposed in [12], either
using Prony’s method or the standing-wave method, to extract

all the modes scattering off the shunt stub discontinuity. It
does not require the modal propagation constants and field
distributions, except that the total number of the guided modes
must be accurately determined a priori.

In this paper, a full-wave algorithm is proposed to an-
alyze a CPW 90° bend, and a full 4 x 4 scattering matrix
is derived to characterize the mode conversion between the

even and odd modes. Based on the MPIE formulation, [14],
the algorithm first solves the field problem by the moment

method [15] using finite element rooftop basis functions.

Given the magnetic current distribution on the apertures, the
matrix pencil approach [16] is then employed to do the de-
embedding procedure and extract the scattering parameters
of these two modes. The formulation and theoretical aspects
are presented in Section II. This algorithm has the advantage
of performing the solution in the space domain directly,
which keeps a good physical insight of the problem [17].
Moreover, the parameter extraction involves only the fields
on the apertures while the number of guided modes and the

propagation constant and modal amplitude of each mode are
obtained in posteriori.

The experimental setup is described in Section III. Since the
test fixtures are simply terminated with SMA connectors, it is
impossible to measure the full 4x 4 scattering matrix directly.
By assuming that the connectors are almost short circuits for
the odd mode, the scattering parameters for the even mode can
be derived from the 4 x 4 scattering matrix and compared with
the measured data. In Section IV, numerical results of the full
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4x 4 scattering matrix are presented to depict the occurrence
of l.he mode conversion due to the bend discontinuity. Finally,
brief conclusions are drawn in Section V.

II. THEORY

A. Mixed Potential Integral Equation Formulation

l?ig. 1 shows a CPW 90° bend discontinuity in the open
reg,ion where the ground plane and the dielectric substrate
extend to infinity in the x and y directions. The conductor is
assumed to be perfect and of zero thickness. The whole region
of the original problem can be split into two separate ones
by applying the Schekunoff’s equivalence principle, which
introduces an equivalent magnetic current on the apertures
M,,. This magnetic current generates electromagnetic field in

the two regions above and below the aperture plane, which can

be expressed in terms of mixed vector and scalar potentials.
The continuity condition of the tangential magnetic field across

the aperture leads to the integral equation [18]

e= x wjwGF(lr – r’l)Ms(r’)dS’
s’

+
//

VGo(lr – r’l)pm(r’)dS’
s’ 1

= Js(r) (1)

where JS is the excitation current, pm is the magnetic charge
relating to the magnetic current through the continuity equation

V: . Ms(r’) + ~wp~(r’) = O (2)

in which T7~ denotes taking divergence along the aperture
surface at the source point r’, and the vector and the scalar
potentials in the aperture plane can be expressed as [18]

GF(T) = ;
[

~–jkor

—+6.
7-

x r Jo(k)
u + Cruotanh(uh) 1~d~ (3)

o u . DTM

+~mJO(Ar)[(~ )
erlc~u + UOG.tanh(uh)

u . DTM

( )11U U + Uo coth(uh) ~d~

+ ~2 DTE
(4)

where

DTM = UOG + u tanh(uh)

DTE = U. + u.coth(uh)

“O=m

“=-

and Jo is the Bessel function. It should be noted that the inte-
grands of the Sommerfeld integrals in (3) and (4) have some
pole singularities and decay very slowly. Special treatment

8*
,*
Q

2
referenee

Fig. 1. Schematic view on a coplanar waveguide 90°bend discontinuity.

Fig. 2. The finite structure considered in nunerical analysis and the current
generators at feeding points.

should be employed for a successful numerical evaluation of
the integrals [17].

The equivalent magnetic current on the apertures can be
solved from (1) by applying the moment method. The two

semi-infinitely long CPW transmission lines are first truncated
into finite sections of length L as shown in Fig. 2. Ideal current
sources 11 and 12 are impressed at the two truncated ends

of port 1, while 13 and 11 at port 2. The aperture region in
the resultant finite bend structure is then divided into a finite
number of rectangular cells. As shown in Fig. 3, the unknown
magnetic currents, z- and y- directed, are expanded as a finite
sum of overlapping rooftop functions

N N

and the magnetic charges by

N

Jupm =
E

Vi Hi \ H.i = --V~’ . Ai. (6)
‘i=l

Note that nonuniform grid division is employed near the
discontinuity region to achieve good accuracy while keeping
affordable computation load. Since not only the even mode but
also the odd mode will be scattered off the bend discontinuity,
the coefficients vi’s on the two slots of a CPW can not be
assumed of same magnitude and opposite phase.
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Fig. 3. The cell division and basis functions of equivalent magnetic currents
and charges in the moment method analysis.

Substitution of (5) and (6) in (1) with the employment
of the Galerkin’s weighting procedure yields a system of
simultaneous equations

(7)
—

where Y is the admittance matrix, V is a vector of unknown
coefficients v,’s, and I is a vector of given excitation cur-
rents, Since the scattering matrix of the discontinuity is, by
definition, independent of the feeding and termination, the
excitation currents here, for simplicity, are choosen to be zero
everywhere except at the feeding points. Also, the structure in
Fig. 2 is finite and no sort of absorbing boundary conditions
need be enforced at the truncated end.

B. Extraction of Scattering Matrix

The magnetic current along the CPW section can be de-
scribed by the superposition of the even and odd modes and

other higher order modes, each one having its own spatial
parameters [12]. For example, consider the section of port 2
from x = O to L in Fig. 2, where a uniform mesh division of
constant interval s in x-direction is chosen in moment method
solution. Given the solved coefficients vi’s, one can find the
total longitudinal magnetic current at each sampled point along

the two slot sections. Physically, it is the line voltage from
the center strip to the ground across a particular slot. Let v,,k
denote the voltage of CPW (or even) mode at the k’th sampled
point, which is determined from average of the line voltages
across the two slots. Then v,,k can be written as

where NT is the number of the sampled points, n is the number
of significant modes (the incoming and outgoing modes treated
as two different ones), y, is the complex propagation constant
of the i’th mode, and c, is the modal voltage.

Equation (8) is a typical problem of extracting poles from
a sampled system response. The matrix pencil method can be
employed to successfully solve the problem [16], [19]. The
solution procedure is briefly summaried as follows. To begin
with, two information matrices [Yo] and [Yl] are constructed
with element values defined by

‘0(~,.j) = ve,z+j–2; K(ij) = Ve,i+j–1 (9)

for i,j = 1,2, . . . ,NT/2. It can be shown [16] that z, = e~’s
corresponds to one of the eigenvalues of [Yo]t [Yl], where [Yo]t
is the pseudo inverse of [Yo] and can be obtained by the
well-known singular value decomposition (SVD) algorithm
available in the IMSL library. The number of modes n can
be determined from the number of singular values which are
significantly larger than the noise level during the SVD analy-
sis. Given the eigenvalue z~ and consequently, the propagation
constant ~,, the modal voltage c~ becomes readily available
from (8) [19]. Without loss of generality, the mode indices

i = 1 and 2 are chosen to denote the incoming and outgoing

waves. Then, the incoming and outgoing modal amplitudes
for even mode at port 2 can be found by aze ~ c1/& and
bz. ~ cz/~. Here, Z. is the characteristic impedance of
the even mode, which is calculated a priori by 2-D spectral
domain analysis [20].

The voltage of slotline (or odd) mode at the sampled
points can be determined from the difference of the line
voltages across the two slots. Following a similar procedure,
the incoming and outgoing modal amplitudes for odd mode

at port 2, a20 and b20 can be extracted. The whole process
is repeated for port 1 to extract the desired modal amplitudes
al., bl., alO, and blO.These modal amplitudes can be related
by a 4x4 scattering matrix, i.e.,

mb10 r roo TO, TOO

11 I

a10
b2. = T:: T.. ree reO

(lo)
aze “

b20 .. TOO roe r..T azO

For example, 170. is the reflection coefficient of the odd mode
due to an incident even mode of unit amplitude, and T.. is

the transmission coefficient of the even mode.

It deserves mentioning that there is no unanimous definition
of the characteristic impedance due to the ambiguity of the
current and voltage in non-TEM modes [21]. The scatter-
ing parameters between modes of the same characteristic
impedance, say ree, rOO, T,e, and TOO,is it-relevant to the

definition of characteristic impedance. They can be determined
from the corresponding modal voltage Ci’s as well, And this
is just the case discussed in [22], However, the scattering
parameters between even and odd modes will depend on how
the characteristic impedances 2= and 20 are defined. Here, the
voltage-power definition of characteristic impedance should
be adopted. The definition can remove the ambiguity of the
voltage due to the non-TEM nature of the guided modes and
consequently, the magnitude square of the modal amplitude is
the power carried by that mode, as required in the convention
of the scattering matrix.

Due to the structure symmetry, the scattering matrix in

(10) includes eight different elements, for which the same
number of linear independent equations is required. The ex-
tracted modal amplitudes under one suitable excitation can
be substituted into (10) to render four equations between the
unknown scattering parameters. Choosing another independent
excitation will suffice to solve the desired scattering matrix. In
the numerical analysis, we simply choose the first excitation of
11 = 1 and all others zero in Fig. 2. The equivalent magnetic
current can be solved from (7). The matrix pencil approach is
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Fig.4. The top view of the test fixture with SMA connectors. (w = 0.5
cm, s = 0.03 cm, 1 = 5 cm, + = 2.33, h = 1.58 mm). Figure is not
drawn to scale.

then employed to extract all the modal amplitudes which are
denoted by a; and b; (i = le, 10, 2e, and 20). Similarly,
another set of the mockil amplitudes a? and b! are extracted

by choosing the second excitation of 12 = 1 and all others
zero. Substitution of these two sets of modal amplitudes in
(lo) yields the following equations

[;!:1[1’[1
[$ z;l[l=[l’11)

Now, all the elements of the scattering matrix can be deter-
mined accordingly. Note that the two ports are assumed to be
the same in this study. In case of nonidentical ports, the above
procedure can be applied as well except that four independent

excitations will be required to determine the whole sixteen
elements in the scattering matrix.

III. EXPERIMENTS

Experiments are performed on a CPW line with a 90° bend
to verify the accuracy of the theoretical results. As illustrated
in Fig. 4, the test fixture is fabricated on a Duroid substrate

(G. = 2.33) of 1.58 mm thickness, and simply terminated
with SMA connectors attached to an HP 85 10B Network
Analyzer. Since the connectors will block the propagation of
the odd mode, only the even mode can be actually measured
in the present setup. A thrtt-reflect-line (TRL) calibration is
done to eliminate the connectors’ effect for the even mode
and to place the two reference planes shown in Fig. 1. Note
that the calibration is successful only if the connectors are
symmetrically soldered to the two sides of the CPW such that
no coupling between the even and odd modes happens there.

Since it is unable to match the both modes at the ends, the
present setup can not measure the elements of the 4x 4 scat-
tering matrix directly and separately. The connector which is
nearly a short to the odd mode will reflect the back-propagating

odd mode back to the input port of the discontinuity. Hence,
the modal amplitudes of the incident and reflected waves for
the odd mode at port 1 will satisfy

a10 = —e–%dblo; d=l+A (12)

and similarly at port 2. Here, I is the length of the CPW
section and A denotes the equivalent extension length of the
connector for the odd mode. By a first order approximation,
the extension length can be intuitively attributed to two factors,
one is a quarter of the circumference of the connector’s outer
conductor and the other is an equivalent IIength corresponding
to the inductance of short-end discontinuity.

By substituting (12) into (10) and equating the second and

fourth rows, the modal amplitudes of the incident odd modes

can be related to those of the incident even modes by

(13)

Given the relations in (13), the first and third rows in (10)
depict that the measured 2x 2 scattering matrix for the even
modes can be written as

R: a=k H-k %1

[

e27”d + roo
x

T00 ’00 I-’R: 3e27”d + roo
(14)

IV. NUMERICAL RESULTS AND DISCUSSION

The present theory is first applied to deal with the bend

discontinuity whose dimensions are shown in Fig. 4. The
moment method is applied to solve the equivalent magnetic
current on the apertures. In numerical computation, the slot is
divided into three cells along the width of the slot as shown
in Fig. 3. The truncated length L of the CPW line is chosen
to be about two guided wavelengths, which has been found
sufficient to achieve convergent extracted modal amplitudes
[19], [22]. In the meantime, the interval s of the division
cell along the CPW line is chosen to be about one-fortieth
wavelength, which is enough to represent the variations of
the field satisfactorily. As a result, each slot is divided into
about 90 cells along the longitudinal direction. The calculated

slot voltage near the bend discontinuity and the truncated end
includes significant contributions from the higher order modes,
which will deteriorate the extraction for the desired guided
modes. Hence, only the information on a center section of
about 70 sampled data is actually employed in the matrix
pencil method to extract the desired scattering parameters.

For the sake of comparison, a simpler division using only
one cell along the width is also employed. The difference
between the results by the two different divisions is not
significant, which means that the simpler division is sufficient
in this case. The main reason is that the slot width is narrow
enough to neglect the transverse component of the magnetic
current [5], [23]. For wider slots, a more detailed division
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Fig. 5. The dispersion curves of the even and odd modes in the associated
coplanar waveguide. Both the results extracted by the matrix pencil approach
and those calculated by the 2-D spectral domain analysis are included for
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Fig. 6. The transmission coefficients of the bend discontinuity shown in
Fig. 4. (The results denoted by continuous lines are obtained by assuming
a uniform longitudinal magnetic current along the slot of CPW, while those
marked with symbols are calculated by employmg a more detailed division
of three cells along the slot width.)

will be necessary to include the longitudinal component and
model the nonuniform field distribution in the transverse
direction.

Given the magnetic current distribution, the matrix pencil
approach is employed to extract the propagation constants
and modal amplitudes of all the guided modes. Fig. 5 shows
the calculated propagation constants versus the frequency for
both the even and odd modes. Note that the matrix pencil
method should be employed four times to extract all the
modal amplitudes in (11) at each frequency. The extracted
propagation constants for the same mode are found to be not
exactly the same. The results in the figure are thus marked
with bars of finite sizes to denote the range over which the
numerical values distribute. The size of the bar somewhat
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Fig. 7, The reflection coefficients of the bend discontinuity shown in Fig. 4.

depicts the computation error, part of which may be attributed
to the insufficient length of the line sections. Numerical
experiments validate that increasing the length of line sections
can reduce the high frequency discrepancy. For the sake of
comparison, the well-known 2-D spectral domain analysis
[20] is also applied to calculate the propagation constants,

which are denoted by the solid and dashed curves. Reasonable
agreement can be found between the results by these two

methods.
The full 4x4 scattering matrix which characterizes the

bend discontinuity can be obtained from the extracted modal
amplitudes by using (11). Fig. 6 shows the magnitude and
phase of all the transmission coefficients between both the
even and odd modes. The transmission coefficients between

different modes, T.. an d Toe, signify the occurrence of the
mode conversion. It is noted from the figure that Toe and
Teo reach the maximum while Too and Tee become very
small in a certain frequency range. It means that one mode
converts almost completely to the other after passing through
the bend. This is expected, since the path difference between
the outer and inner slots is close to a half of waveguide
wavelength. Consequently, it becomes a challenge to preserve
good transmission through the CPW bend for the even mode
in this frequency range. Using the air bridge can suppress the
occurrence of the odd mode, but will in the same time increases
dramatically the reflection coefficient as depicted in (14). Of
course, it will not work well either to miter the corner as in
the microstrip line [24]. However, from another point of view,
the mode conversion phenomenon offers a promising way in
the design of CPW to coupled slotline transition.

The magnitude and phase of the reflection coefficients are
shown in Fig. 7. In general, the reflection coefficients are one

order of magnitude smaller than the transmission coefficients.
They are comparatively more sensitive to numerical errors
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Fi~. 8. Comparison between the measured S-parameters of the coplanar
waveguide bend shown in Fig. 4 and the theoretical prediction but with
different triaf extension length A as a parameter. (a) Magnitude and phase of

[1]

S1l and SZ1, (b) magrutude of Sll, and(c) magmtudeof Szl.

[2]
and therefore show undesirable ripples in the figure. It is
worth mentioning that the reciprocity theory is not explicitly

[3]
imposed in the determination of the scattering matrix by (11).

As a result, the calculated results for the mode conversion

coefficients r.0 and rOe (and similarly for T.. and Toe in

Fig.6) are slightly different. The discrepancy is quite small

at low frequencies but may become as large as 15% at higher

frequencies, where the mode conversion is less significant and

therefore susceptible to numerical errors.
Fig. 8 shows themeasured S-parameters of the CPW bend

of Fig. 4 in the range of 2 to 10 GHz. The solid and dashed
curves denote the theoretical results which are obtained from
the extracted 4x4 scattering matrix by (14). The extension
length A is chosen as 0.5 cm, which is found to yield good

agreement in the slope of the phase of the reflection coefficient.
The adjustment is necessary since the effect of the connectors

is unavailable and it influences the results seriously. Other
extension lengths, say A = 0.45 cm and 0.55 cm, have been
tried and the results are plotted in the same figure to depict the
sensitivity of theoretical S1l and S21 to the values of A. They
fail to predict reasonably the ripples in the measured ISll I
and IS’211.The ripples in Fig. 8 signify the strong interaction
between the even and odd modes, and therefore the phase
difference between the two modes is important. The agreement
between the theoretical results with suitable chosen A and

the experimental data is very good in the lower frequency
range, which validates the accuracy of the present algorithm.

The deviation in the higher frequency range can be partly

attributed to the unpredictable high frequency characteristics
of the connectors.

V. CONCLUSION

A CPW 90° bend has been analyzed successfully by com-

bining the MPIE formulation, the moment method, and the
matrix pencil approach. The algorithm can be generalized
to deal with other CPW discontinuities consisting of several
input ports. The number of guided modes in each port can

be arbitrary and furthermore, the propagation constant of each
guided mode need not be known a priori.

Theoretical results for the full 4x 4 scattering matrix of the
bend discontinuity have been presented and verified indirectly
by the experiment. The mode conversion phenomenon has
been for the first time characterized thoroughly. The phe-
nomenon becomes very significant when the path difference

between the outer and inner slots of tlhe bend is close to

a half of waveguide wavelength. In this frequency range, it
is very difficult to suppress the occurrence of the odd mode

while keeping a small reflection coefficients of the even mode.
However, from another point of view, this significant mode
conversion may find applications in the design of CPW to
coupled slotline transition.
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